Unidad 6: Protocolos OSPF.
TRABAJOS Y PRACTICAS DE LA UNIDAD:
Portafolio de Evidencias
Proyecto de Red Terminado.
Practica OSPF.
***Aportaciones Personales***
Videos Para Compreder mejor la Unidad
PROTOCOLOS RIP/OSPF/BGP
RIP (Routing information protocolo, protocolo de información de encaminamiento) RIP es un protocolo de encaminamiento interno, es decir para la parte interna de la red, la que no está conectada al backbone de Internet. Es muy usado en sistemas de conexión a internet como infovia, en el que muchos usuarios se conectan a una red y pueden acceder por lugares distintos. Cuando un usuario se conecta el servidor de terminales (equipo en el que finaliza la llamada) avisa con un mensaje RIP al router más cercano advirtiendo de la dirección IP que ahora le pertenece. Así podemos ver que RIP es un protocolo usado por distintos routers para intercambiar información y así conocer por donde deberían enrutar un paquete para hacer que éste llegue a su destino.
OSPF (Open shortest path first, El camino más corto primero) OSPF se usa, como RIP, en la parte interna de las redes, su forma de funcionar es bastante sencilla. Cada router conoce los routers cercanos y las direcciones que posee cada router de los cercanos. Además de esto cada router sabe a qué distancia (medida en routers) está cada router. Así cuando tiene que enviar un paquete lo envía por la ruta por la que tenga que dar menos saltos. Así por ejemplo un router que tenga tres conexiones a red, una a una red local en la que hay puesto de trabajo, otra (A) una red rápida frame relay de 48Mbps y una línea (B) RDSI de 64Kbps. Desde la red local va un paquete a W que esta por A a tres saltos y por B a dos saltos. El paquete iría por B sin tener en cuenta la saturación de la linea o el ancho de banda de la linea. La O de OSPF viene de abierto, en este caso significa que los algoritmos que usa son de disposición pública.
BGP (Border gateway protocol, protocolo de la pasarela externa) BGP es un protocolo muy complejo que se usa en la interconexión de redes conectadas por un backbone de internet. Este protocolo usa parámetros como ancho de banda, precio de la conexión, saturación de la red, denegación de paso de paquetes, etc. para enviar un paquete por una ruta o por otra. Un router BGP da a conocer sus direcciones IP a los routers BGP y esta información se difunde por los routers BGP cercanos y no tan cercanos. BGP tiene sus propios mensajes entre routers, no utiliza RIP. BGP es usado por grandes proveedores de conectividad a internet. Por ejemplo una empresa (A) tiene alquilada una línea a telefónica-data. La empresa A no hace BGP y posiblemente los routers más cercanos no utilizarán BGP pero si los que interconecten Telefónica-Data con Hispanix (punto neutro de interconexión en España). |
Encaminamiento, routers y áreas
OSPF organiza un sistema autónomo (AS) en áreas. Estas áreas son grupos lógicos de routers cuya información se puede resumir para el resto de la red. Un área es una unidad de encaminamiento, es decir, todos los routers de la misma área mantienen la misma información topológica en su base de datos de estado-enlace (Link State Database): de esta forma, los cambios en una parte de la red no tienen por qué afectar a toda ella, y buena parte del tráfico puede ser "parcelado" en su área.
Tipos de router en OSPF
Un router OSPF clásico es capaz de encaminar cualquier paquete destinado a cualquier punto del área en el que se encuentra (encaminamiento intra-area). Para el encaminamiento entre distintas áreas del AS (encaminamiento inter-area) y desde el AS hacia el exterior (encaminamiento exterior), OSPF utiliza routers especiales que mantienen una información topológica más completa que la del área en la que se sitúan. Así, pueden distinguirse:
Routers fronterizos de área o ABRs (Area Border Routers), que mantienen la información topológica de su área y conectan ésta con el resto de áreas, permitiendo encaminar paquetes a cualquier punto de la red (inter-area routing).
Routers fronterizos del AS o ASBRs (Autonomous System Border Routers), que permiten encaminar paquetes fuera del AS en que se alojen, es decir, a otras redes conectadas al Sistema Autónomo o resto de Internet (external routing).
Un paquete generado en la red será enviado, de forma jerárquica, a través del área si su destino es conocido por el emisor; al ABR del área correspondiente si el destino es inter-área; este lo enviará al router del área de destino, si este se encuentra en el AS; o al ASBR si el destino del paquete es exterior a la red (desconocida por el ABR).
Tipo de áreas
Cuando los sistemas autónomos son grandes por si mismos y nada sencillos de administrar. OSPF les permite dividirlos en áreas numeradas donde un área es una red o un conjunto de redes inmediatas. Un área es una generalización de una subred. Fuera de un área, su topología y detalle no son visibles.
OSPF distingue los siguientes tipos de área:
Área Backbone
El backbone, también denominado área cero, forma el núcleo de una red OSPF. Es la única área que debe estar presente en cualquier red OSPF, y mantiene conexión, física o lógica, con todas las demás áreas en que esté particionada la red. La conexión entre un área y el backbone se realiza mediante los ABR, que son responsables de la gestión de las rutas no-internas del área (esto es, de las rutas entre el área y el resto de la red).
Área stub
Un área stub es aquella que no recibe rutas externas. Las rutas externas se definen como rutas que fueron inyectadas en OSPF desde otro protocolo de encaminamiento. Por lo tanto, las rutas de segmento necesitan normalmente apoyarse en las rutas predeterminadas para poder enviar tráfico a rutas fuera del segmento.
Área not-so-stubby
También conocidas como NSSA, constituyen un tipo de área stub que puede importar rutas externas de sistemas autónomos y enviarlas al backbone, pero no puede recibir rutas externas de sistemas autónomos desde el backbone u otras áreas.
Interfaces en OSPF
Los nodos de una red basada en OSPF se conectan a ella a través de una o varias interfaces con las que se conectan a otros nodos de la red. El tipo de enlace (link) define la configuración que asume la interfaz correspondiente. OSPF soporta las siguientes tipos de enlace, y provee para cada uno de ellos una configuración de interfaz:
Punto a punto (point-to-point, abreviadamente ptp), cuando la interfaz está conectada exclusivamente a otra interfaz.
Punto a multipunto (point-to-multipoint, abreviadamente ptmp).
Broadcast, para enlaces en los que todas las interfaces pueden conectarse directamente entre ellas. El ejemplo típico de enlace broadcast es el que corresponde a una red de tipo Ethernet.
Enlace virtual (virtual link), cuando no responde a una topología física.
Enlace de acceso múltiple acceso sin difusión (Non-Broadcast Multiple Access, NBMA), para enlaces en los que el medio es compartido, pero no todas las interfaces participantes pueden comunicarse directamente entre sí.
Relación con los vecinos en OSPF
Diagrama de estados de vecinos y transiciones entre estados en OSPF.
Cada router OSPF realiza un seguimiento de sus nodos vecinos, estableciendo distintos tipos de relación con ellos. Respecto a un router dado, sus vecinos pueden encontrarse en siete estados diferentes. Los vecinos OSPF progresan a través de estos estados siguiendo el diagrama de la derecha.
Estados de OSPF
Desactivado (DOWN). En el estado desactivado, el proceso OSPF no ha intercambiado información con ningún vecino. OSPF se encuentra a la espera de pasar al siguiente estado (Estado de Inicialización)
Inicialización (INIT). Los routers (routers) OSPF envían paquetes tipo 1, o paquetes Hello, a intervalos regulares con el fin de establecer una relación con los Routers vecinos. Cuando una interfaz recibe su primer paquete Hello, el router entra al estado de Inicialización. Esto significa que este sabe que existe un vecino a la espera de llevar la relación a la siguiente etapa. Los dos tipos de relaciones son Bidireccional y Adyacencia. Un router debe recibir un paquete Hello (Hola) desde un vecino antes de establecer algún tipo de relación.
Bidireccional (TWO-WAY).(router = router). Empleando paquetes Hello, cada router OSPF intenta establecer el estado de comunicación bidireccional (dos-vías) con cada router vecino en la misma red IP. Entre otras cosas, el paquete Hello incluye una lista de los vecinos OSPF conocidos por el origen. Un router ingresa al estado Bidireccional cuando se ve a sí mismo en un paquete Hello proveniente de un vecino. El estado Bidireccional es la relación más básica que vecinos OSPF pueden tener, pero la información de encaminamiento no es compartida entre estos. Para aprender los estados de enlace de otros routers y eventualmente construir una tabla de encaminamiento, cada router OSPF debe formar a lo menos una adyacencia. Una adyacencia es una relación avanzada entre routers OSPF que involucra una serie de estados progresivos basados no solo en los paquetes Hello, sino también en el intercambio de otros 4 tipos de paquetes OSPF. Aquellos routers intentando volverse adyacentes entre ellos intercambian información de encaminamiento incluso antes de que la adyacencia sea completamente establecida. El primer paso hacia la adyacencia es el estado ExStart.
Inicio de Intercambio (EXSTART). Técnicamente, cuando un router y su vecino entran al estado ExStart, su conversación es similar a aquella en el estado de Adyacencia. ExStart se establece empleando descripciones de base de datos tipo 2 (paquetes DBD), también conocidos como DDPs. Los dos routers vecinos emplean paquetes Hello para negociar quien es el "maestro" y quien es el "esclavo" en su relación y emplean DBD para intercambiar bases de datos. Aquel router con el mayor router ID "gana" y se convierte en el maestro. Cuando los vecinos establecen sus roles como maestro y esclavo entran al estado de Intercambio y comienzan a enviar información de encaminamiento.
Intercambio (EXCHANGE). En el estado de intercambio, los routers vecinos emplean paquetes DBD tipo 2 para enviarse entre ellos su información de estado de enlace. En otras palabras, los routers se describen sus bases de datos de estado de enlace entre ellos. Los routers comparan lo que han aprendido con lo que ya tenían en su base de datos de estado de enlace. Si alguno de los routers recibe información acerca de un enlace que no se encuentra en su base de datos, este envía una solicitud de actualización completa a su vecino. Información completa de encaminamiento es intercambiada en el estado Cargando.
Cargando (LOADING). Después de que las bases de datos han sido completamente descritas entre vecinos, estos pueden requerir información más completa empleando paquetes tipo 3, requerimientos de estado de enlace (LSR). Cuando un router recibe un LSR este responde empleando un paquete de actualización de estado de enlace tipo 4 (LSU). Estos paquetes tipo 4 contienen las publicaciones de estado de enlace (LSA) que son el corazón de los protocolos de estado de enlace. Los LSU tipo 4 son confirmados empleando paquetes tipo 5 conocidos como confirmaciones de estado de enlace (LSAcks).
Adyacencia completa (FULL). Cuando el estado de carga ha sido completado, los routers se vuelven completamente adyacentes. Cada router mantiene una lista de vecinos adyacentes, llamada base de datos de adyacencia.